Critical Structural Integrity Challenges for the Energy Sector: Stress Corrosion Cracking and Hydrogen Embrittlement

Session 6: View of Digital Technologies as a Tool for Studying Stress Corrosion Cracking

30 de março de 2023

MINISTÉRIO DA

INOVAÇÃO

CIÊNCIA. TE

GOVERNO FEDERA

UNIÃO E RECONSTRUÇÃO

Introduction – General Information

National Institute of Technology (NIT)

- NIT is localized in the downtown of Rio de Janeiro and is an institution committed to innovation since 1921.
- NIT is linked to the Ministry of Science, Technology and Innovation (MCTI) and undertakes advanced research aimed at transferring technology to the productive sector, in addition to offering highly complex technological services.
- NIT has 23 laboratories, and their main areas are Catalysis and Biocatalysis; Corrosion; Bioprocessing and Bioproducts; Materials Engineering; Renewable Energies and Energy Efficiency; Evaluation of Processes, and Products; Industrial Design; Additive Manufacturing; and Production Management Technologies.

The Laboratory of Stress Corrosion Cracking, H2S, CO2, and corrosivity - LAH2S

- LAH₂S plans and executes research and development projects and technological services linked to study the corrosion and degradation of materials exposed to extremely corrosive environments. (Metals / Polymers / Ceramics / Composites)
- LAH₂S gives support to R&D and innovation to O&G, chemical, petrochemical, mining and metallurgical industries.
- The main team is composed by specialists in Chemistry, Physical Metallurgical, Fracture mechanics and Electrochemistry.
- The laboratory had increased your staff with collaboration between NIT's laboratories such as LAMAP, LACPM, CENANO and LACAT and some laboratories from UFF and PUC-Rio
- LAH2S simulates service conditions of High Pressure (70MPa) and High Temperature (300°C)

SKILLS - LAH2S

INSTITUTO NACIONAL DE INTECNOLOGIA

Research, Development and Innovation – LAH2S

- $\square Environmentally-Assisted Cracking (H_2, NH_3, H_2S, CO_2, Chlorides and ethanol)$
 - o Fracture Mechanics Corrosive Environmental
 - o Fatigue Corrosion (S-N, ϵ -N, and da/dN)
 - o Stress Corrosion Cracking
 - o Hydrogen Induced Cracking
 - o Hydrogen Embrittlement
 - Sour and Sweet Corrosion
 - Localized Corrosion
- Corrosion Prevention and Control
 - o Performance of Corrosion Inhibitors
 - Performance of H₂S scavengers
 - o Performance of Coatings
- **J** Failure Analyses

 CO_{2}

- Material Selection for sour service
- Polymers degradation in presence of H₂S and CO₂
- Well cementing integrity in presence of H₂S and

Oil and Gas

Mining

🖵 Steelwork

☐ Additive manufacturing

Removable Energies (hydrogen, ethanol, Syntheses Gas)

☐ Advanced materials (graphene, Titanium)

☐ Chemical

Structural Integrity: Failure Mechanisms

Fatigue
SCC / HE
High Temperature
Oxidation
Overload
Corrosion
Wear / High strain

Manson, S.S., Halford, G.R., "Fatigue and durability of Structural Materials", 2005

Naville, W., "Influência da geom**èri**a de corpos de prova na previsão de vida em fadiga de baixo ciclo de chapas de aço (ARBL) bifásicos", 2009

Corrosion Management

□ AI, Machine Learning, and Digital Twins

Corrosion and Protection

Multi-physics modelling with data-driven analytics

A Recent Challenges:

How to apply Digital Technologies for SCC and HE

Why we should apply digital technologies

- Financial loss due to corrosion (US\$65Billion) (NACE-AMPP)
 Corrosion Management can reduce losses in 15% 20% (NACE)
- ☐ It can reduce the number of small and full-scale tests and increase the TRL of Research Projects
- Powerful tools to analyze structural integrity, crack propagation, and some Multiphysics problems are available in commercial software (Comsol, Ansys, Matlab). (Phased field, Corrosion, ...).

Mechanical driven forces: Applied Stress and Stress Intensity Factor

Fig.: SSC on a Martensitic Stainless Steel

Mechanical driven forces: Applied Stress and Stress Intensity Factor

Mechanical driven forces: Applied Stress and Stress Intensity Factor

Typical da/dt x K₁ crack growth under EAC

Mechanical driven forces: Applied Stress and Stress Intensity Factor

Corrosion Management: Avoid Cracks!

☐ KI applied below the red line

 $K_{I} = \sigma \sqrt{\pi a} \qquad \qquad K_{I} = \eta \sigma \sqrt{\pi a} \qquad \qquad K_{I} = \eta \sigma \sqrt{\pi a} f(a/w)$

Stress Intensity Factor

How can we avoid SCC and HE propagating cracks

Mengen Liu et al., "Plastic stress concentration effects in fatigue strength, International Journal of Fatigue", Vol. 168, 2023. https://doi.org/10.1016/j.ijfatigue.2022.107394.

□ NACE TM177 method A Sol. B | Carbon Steel 4140

NACE TM177 Sol. B | Carbon Steel 4140 Constant load test | Non propagating crack

Carbon Steel Sample with

Tests with S13Cr UNS41426 | Brine solution (100g/L NaCl) pH 4, 250mbar H_2S , 750mbar CO₂

T Tests with S13Cr UNS41426 | Brine solution (100g/L NaCl) pH 4, 250mbar H₂S, 750mbar CO₂

T Tests with S13Cr UNS41426 | Brine solution (100g/L NaCl) pH 4, 250mbar H_2S , 750mbar CO₂

 \Box FEM allows to find $\phi(a/w)$.

$$K_I = \eta \, \sigma \sqrt{\pi a} \, f(a/_W) \boldsymbol{\phi}(a/_W)$$

https://br.freepik.com/

 $\square KI_{EAC} and S_{EAC} will change for each material/corrosive environment.$

Multiphysics challenge!

Multiphysics approach for HE under high pressure Gaseous Hydrogen

https://br.freepik.com/

 $\square KI_{EAC} and S_{EAC} will change for each material/corrosive environment.$

Multiphysics challenge!

Hydrogen Embrittlement under High Pressure Gaseous H₂

Recent projects with Multi-physics modelling to Hydrogen Embrittlement in High Pressure Gaseous H₂

 $S_{L-H2}(H_2)$ Autoclave System up to 70MPa

 $KI_{TH-H2} (H_2)$ Autoclave System up to 35MPa

Hydrogen Embrittlement under High Pressure Gaseous H₂

\Box II_{H2} in gaseous H_2 (up to 20MPa)

$\Box \Delta K_{TH-H2}$ in gaseous H_2 (up to 20MPa)

Hydrogen Embrittlement under High Pressure Gaseous H₂

On going research: Consider H₂ fugacity in a phased field model for Corrosion Fatigue and Short cracks models.

$$\Box$$
 Consider the f H₂ effect in S_{L-H2}, KI_{th-H2}, JI_{H2}, and Δ KI_{th-H2}

Increasing $f H_2$

$$S_{L-H2'}$$
, $KI_{th-H2'}$, $JI_{H2'}$, ΔKI_{th-H2} may decrease

Hydrogen Embrittlement under High Pressure Gaseous H₂

Hydrogen Permeation through electrochemical autoclave

Electrochemical devices developed to study SCC-CO₂ that can be used to produce data for Multiphysics analysis

Thank you!

Rodrigo Landim

Mechanical Engineer - INT

Av. Venezuela, 82 - Praça Mauá. 20081-312 Rio de Janeiro RJ Tel: (21) 2123-1025 rodrigo.landim@int.gov.br www.int.gov.br

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO GOVERNO FEDERAL

UNIÃO E RECONSTRUÇÃO