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Structural Integrity

Structural Integrity is the ability of a component, structure or asset to operate at optimum
level under the pressure of a load, including the weight of the asset itself. The asset needs
to sustain without drastically breaking and/or deforming, whilst still being able to perform
its intended use. Structural integrity is a vital consideration for structural engineering,
especially when constructing plant and equipment, due to the risk of catastrophic failure
from which recovery is not possible. Structural failure is the result of a loss of structural
integrity.
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https://www.theweldinginstitute.com/Find-Out-About-Structural-Integrity-and-Failure

Structural Integrity

The aim of this major reference work is to provide a first
point of entry to the literature for the researchers in any
field relating to structural integrity in the form of a definitive
research/reference tool which links the various sub-disciplines
that comprise the whole of structural integrity.

The scope of this work encompasses, but is not restricted to:
fracture mechanics, fatigue, creep, materials, dynamics,
environmental degradation, numerical methods, failure
mechanisms and damage mechanics, interfacial fracture and
nano-technology, structural analysis and surface behaviour.
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Volume 1: Structural Integrity Assessment—Examples and Case Studies
Volume 2: Fundamental Theories and Mechanisms of Failure

Volume 3: Numerical and Computational Methods

Volume 4: Cyclic Loading and Fatigue

Volume 5: Creep and High-temperature Failure

Volume 6: Environmentally Assisted Fatigue

Volume 7: Practical Failure Assessment Methods

Volume 8: Interfacial and Nanoscale Fracture

Volume 9: Bioengineering

Addendum 2007: Mechanical Characterisation of Materials


https://www.sciencedirect.com/referencework/9780080437491/comprehensive-structural-integrity

Structural Integrity Assessments

BS 7910:2019 FITNESS-FOR-SERVICE

Guide to methods for assessing the

API 579-1/ASME FFS-1, December 2021
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structures

The fracture mechanics based fithess-for-purpose (FFP) approach, also referred to as Engineering Critical
Analysis (ECA), enables the significance of flaws to be assessed in terms of structural integrity. The ECA
concept has undergone extensive developments in the past 30 years or so and the widely used PD6493
procedure has been produced in the UK. The document has recently been revised and is now published as BS
7910 'Guide on methods for assessing the acceptability of flaws in metallic structures'
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http://www.eurofitnet.org/sintap_index.html


https://www.twi-global.com/technical-knowledge/published-papers/engineering-critical-analyses-to-bs-7910-the-uk-guide-on-methods-for-assessing-the-acceptability-of-flaws-in-metallic-structures

Flaws and Fracture Mechanics

Any given welded equipment (pressure vessel, pipeline, offshore structure) may have flaws - inherent to the
fabrication method applied. According to the NDT techniques employed and their PoD - a maximum flaw size
may be expected.
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Flaws and Fracture Mechanics

Failure mechanisms not predicted during design - fatigue, ductile to brittle transition, stress corrosion
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Brittle failure

« A brittle failure takes place in an abrupt manner, usually with
catastrophic consequences

« Usually requires the combination of 3 factors:
» Crack-like flaw (ex. lack of fusion, lack of penetration in welded
joints)
» Applied tensile load (even if only residual stresses);
» Low fracture toughness
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Brittle failure vs. ‘embrittlement’
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Brittle failure - low fracture toughness (‘abrupt failure’)
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 Nuclear reactor pressure vessel steels under radiation embrittlement; _ TEvPERATURE
« Temper embrittled Cr-Mo steels with high antimony, phosphorus, tin and arsenic content displaying

intergranular fracture surfaces (Watanabe J factor or Bruscato X factor);

Some environmentally assisted cracking (EAC) types apply the term ‘embrittlement’ in a more
general sense - meaning that failure can occur with applied stresses significantly below those
expected in air or an inert environment (e.g., Hydrogen Embrittlement).

Nevertheless, EAC does not necessarily leads to actual embrittlement - i.e. lowering of the
fracture toughness of the bulk material. Quite often, the phenomena is rather of crack initiation

followed by subcritical crack growth - until an abrupt failure takes place with a ‘final’ fracture

toughness similar to that measured in inert environment. o _
Similar to fatigue!


https://inis.iaea.org/collection/NCLCollectionStore/_Public/07/222/7222068.pdf

Fatigue crack initiation and subcritical growth
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J. Polak, V. Mazanova, M. Heczko, R. Petras, I. Kubéna, L. Casalena, J. Man,

The role of extrusions and intrusions in fatigue crack initiation

Engineering Fracture Mechanics, Volume 185, 2017, Pages 46-60, ISSN 0013-7944

|> https://doi.org/10.1016/j.engfracmech.2017.03.006.
(https://www.sciencedirect.com/science/article/pii/S0013794416307305)
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specimens are frequently tested at a mean stress of zero. E1823
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Fatigue crack initiation and subcritical growth
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Fracture Process Zone and Crack-tip Conditions

K - Stress Intensity Factor

4Gl £1823 - 21 CTOD (0) - Crack Tip Opening Displacement

J-Integral and J-Resistance Curve
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Note 1—See definition of mode.



Failure Assessment Diagram - FAD
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Similitude

“The concept of similitude, when it applies, provides the theoretical 4

basis for fracture mechanics. Similitude implies that the crack-tip @ bt

conditions are uniquely defined by a single loading parameter such e
v

—

as the stress-intensity factor (K).”

T.L. Anderson — Fracture Mechanics — Fundamentals and Application 3rd Edition
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T.L. Anderson — Fracture Mechanics — Fundamentals and Application 3rd Edition



Environmentally Assisted Cracking (EAC)

Stress Corrosion Cracking Hydrogen Induced Cracking

Corrosion-Fatigue Sulfide Stress Cracking

Hydrogen Embrittlement Liquid Metal Embrittlement



Environmentally Assisted Cracking (EAC)
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Environmentally Assisted Cracking (EAC)
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General view of SCC and HE in the Energy Sector

——————>
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https://www.rigzone.com/news/aker_solutions_petrobras_ink_deal_for_subsea_equipment-07-nov-2022-170967-article/
https://petrobras.com.br/en/our-activities/main-operations/terminals-and-pipelines/sao-sebastiao-terminal-osplan-i-pipeline.htm
https://comunicabaciadesantos.petrobras.com.br/conteudo/fpso-p-68.html
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Wind Turbines and Wind Farms

« Fast growing number of offshore platforms and wind power facilities
globally;

* Long-period service with limited access for inspection and interventions;

« High humidity, salinity, and long wetting times near sea level especially
in subtropical and tropical sea areas;

« SCC/EAC conditions not fully mapped — on going work;

« Fatigue is deemed the main failure mechanism and can be aggravated
by corrosion-fatigue;

https://petrobras.com.br/fatos-e-dados/firmamos-acordo-com-a-equinor-para-avaliar-sete-projetos-de-eolica-offshore-no-brasil.htm



https://agenciabrasil.ebc.com.br/economia/noticia/2023-03/petrobras-avalia-novos-projetos-de-energia-eolica-na-costa-brasileira
https://petrobras.com.br/fatos-e-dados/firmamos-acordo-com-a-equinor-para-avaliar-sete-projetos-de-eolica-offshore-no-brasil.htm

Solar Energy and Solar Power Plants

« SCC/EAC conditions not fully mapped;
« High thermal gradients, specially in Concentrated Solar Power;

« Challenges with molten-salt and thermal-energy storage;

lvanpah Solar Electric Generating System

https://nossaenergia.petrobras.com.br/energia/de-olho-na-energia-do-futuro/



https://nossaenergia.petrobras.com.br/energia/de-olho-na-energia-do-futuro/
https://www.energy.gov/lpo/ivanpah

Carbon Capture Utilisation and Storage (CCUS)

Capture

Capturing CO, from fossil or
biomass-fuelled power stations,
industrial facilities, or directly from
the air.

Use

Using captured CO, as an input
or feedstock to create products
or services.
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Transport

Moving compressed CO, by ship or
pipeline from the point of capture to

the point of use or storage.

7 (Y, =

— @

P

Storage
Permanently storing CO, in

underground geological formations,
onshore or offshore.

!

Main Sl challenges: transport of CO, rich fluids;
Dense phase or gas phase CO,;

Impurity elements and risk of corrosion and material
degradation;

Arresting running ductile fractures in pipelines transporting
CO, has proven to be more challenging than in
transporting natural gas (NG);

oy c02SafePipe JIP

https://www.dnv.com/article/design-and-operation-of-co2-pipelines-co2safepipe-240345

https://petrobras.com.br/fatos-e-dados/programa-de-ccus-da-petrobras-no-pre-sal-e-o-maior-do-mundo-em-volume-de-gas-carbonico-co2-reinjetado.htm



https://petrobras.com.br/fatos-e-dados/programa-de-ccus-da-petrobras-no-pre-sal-e-o-maior-do-mundo-em-volume-de-gas-carbonico-co2-reinjetado.htm
https://www.iea.org/reports/co2-transport-and-storage
https://www.dnv.com/article/design-and-operation-of-co2-pipelines-co2safepipe-240345

Nuclear Power Plants

IAEA Nuclear Energy Series

ess Corrosion
cking in
ht Water Reactors:

Stress Corrosion Cracking of Current Structural Materials In Commercial Nuclear Power Plants
Peter L. Andresen

Paper presented at the CORROSION 2012, Salt Lake City, Utah, March 2012.
Paper Number: NACE-2012-1929

P.L. Andresen,

9 - Stress corrosion cracking (SCC) of austenitic stainless steels in high temperature light water reactor (LWR) environments,
Editor(s): Philip G. Tipping, In Woodhead Publishing Series in Energy,

Understanding and Mitigating Ageing in Nuclear Power Plants, Woodhead Publishing,

2010, Pages 236-307, ISBN 9781845695118, https://doi.org/10.1533/9781845699956.2.236.

https://www.sciencedirect.com/science/article/pii/B9781845695118500093

G.S. Was, P.L. Andresen,

6 - Irradiation assisted corrosion and stress corrosion cracking (IAC/IASCC) in nuclear reactor systems and components,
Editor(s): Damien Féron,

In Woodhead Publishing Series in Energy, Nuclear Corrosion Science and Engineering, Woodhead Publishing, 2012,

Pages 131-185, ISBN 9781845697655, https://doi.org/10.1533/9780857095343.2.131.

https://www.sciencedirect.com/science/article/pii/B9781845697655500068



https://www-pub.iaea.org/MTCD/publications/PDF/P1522_web.pdf
https://www.sciencedirect.com/science/article/pii/B9781845695118500093
https://www.sciencedirect.com/science/article/pii/B9781845697655500068

Nuclear Power Plants ’-i

Laura Carroll  |doho Nafiono
e-mail: Laura.Carroll@INL.gov Laboratory

THE ROLE OF ENVIRONMENT ON HIGH TEMPERATURE CREEP-FATIGUE BEHAVIOR OF ALLOY 617

Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the Very High Temperature Nuclear
Reactor (VHTR), expected to have an outlet temperature as high as 950°C. Acceptance of Alloy 617 in Section 11l of the ASME Code
for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests
a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue
crack growth mechanisms and failure life
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Energy Transition - Hydrogen gas transport and storage

Worldwide trend for transition to low carbon energy grid and economy;

Hydrogen as energy vector and means of storage is a critical part of this process;

In this complex utilization and supply chain for hydrogen,
transport and storage of hydrogen gas at high pressures is crucial
to lower costs and ensure safe operation;

Transport in existent facilities (‘vintage’ re-purposed pipelines) is
one of the best cost-effective solutions - but risk of vintage
material degradation under high pressure hydrogen gas must be
assessed;

da/dN (crack growth rate)
N
)
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o

S AK (stress intensity factor range) = 2 » :
Sandia National Laboratories - Hydrogen Effects on Pipeline Steels and Blending into Natural Gas
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https://www.osti.gov/servlets/purl/1646101

Energy Transition - Hydrogen gas transport and storage

Transportation of hydrogen gas in offshore
pipelines: H2Pipe
Joint industry project

1 Background
Background for Phase 1 of the Joint Industry Project H2Pipe was to develop a Guideline for design and
operation of hydrogen pipelines.

List of deliverables Phase 1:

e FMECA Design and Operation of Hydrogen Pipelines

e State-of-the-Art for Material Aspects Related to Transport of Hydrogen Gas in CMn-Pipelines
® Guideline Design, Construction and Operation of Hydrogen Pipelines

e Technical report Initial Mechanical Test Program

e Initial assessment Running Fracture

2 Objectives of Phase 2

The objectives of Phase 2 are to build on Phase | of the H2Pipe JIP and to develop the guideline to a level
where it can offer direct and detailed support in design and re-qualification of offshore hydrogen
pipelines.

3 Scope Phase 2

The Phase 2 will focus on the following areas:

e Special design scenario considerations

e Effect of H2 on crack growth resistance and deformation capacity
¢ Hydrogen uptake

® Risk assessment study

e Update of Guideline document

Table 5-1 List of participants Phas

DNV

Company Country* Company Country*
Aker Solutions Norway Rosen Germany
Allseas Netherlands
Ansteel China Saipem Italy
ArcelorMittal Belgium Shell Netherlands
BP United Subsea 7 U_nlted
Kingdom Kingdom
Corinth Pipeworks Greece Tata Steel India
TechnipFMC United
Energinet Denmark ’
Kingdom
Equinor Norway Tenaris Italy
ExxonMobil United Stated TotalEnergies Norway
of America
Trans Adriatic switzerland
Gassco Norway Pipeline
Gasunie Netherlands
Vallourec France
Hyundai Steel South Korea
Welspun India
Intecsea Netherlands
Wintershall Dea Germany
JFE Steel Japan
Jindal Saw India Wood United
Kingdom
MNeptune Energy Norway
] @rsted Denmark
Nippon Steel Japan




Energy Transition - Hydrogen gas transport and storage
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The aim of the ANR Industrial MESSIAH Chair is to understand the
effect of hydrogen on the mechanical behavior of transport
facilities and the risks of rupture. More specifically, the project will
study the toughness of gas transport facilities in service by using
mini-test pieces machined in coupons from the facilities.

https://messiah.minesparis.psl.eu/en/home/
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HyLINE - Safe Pipelines for Hydrogen Transport

Hydrogen, the most abundant chemical substance in the universe,
may, as an energy carrier hold the key to the inevitable and needed
transition from fossil fuels to renewable energy. Together with
Norway's important role as a major energy provider in Europe
comes the obligation to be a main player in this transition.

https://www.sintef.no/en/projects/2019/hyline-safe-pipelines-for-hydrogen-transport/



https://www.sintef.no/en/projects/2019/hyline-safe-pipelines-for-hydrogen-transport/
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Downhole Components (DHSV, Locators, Tubing Hangers, Casing Hangers)
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Downhole Components (DHSV, Hangers, etc.)

HISC on Precipitation Hardened Nickel Alloys (ex. 716, 718, 725)
Agressive brine solutions for packer fluids (+ CO,, + H,S)
Failures on out of standard SMSS (S13Cr, 13Cr)

Transient operations such as well acidizing

Production fluid with high salinity and high CO,

/

fFlgureBa S RO g  F S

e L) S ’ - SR ho! ¥ g W o’ v
DMR2012-08-07 14.10.14 A R A ! ) Lo ——



Subsea equipment, risers and flowlines

Subsea equipment

Hydrogen Embrittlement from cathodic protection (anodes)

Low alloy steel fasteners on Manifolds, PAB, XT, BOP (GoM)
Dissimilar welded joints — LAS/IN625 (GoM and North Sea)

HISC on Precipitation Hardened Nickel Alloys fasteners (mainly IN718)
HISC on Duplex and Martensitic Stainless Steels (13Cr and S13Cr)

[New Challenge] Subsea Factory Requirements / High CO,, pressures

Risers and Flowlines

SN Fatigue (flexible and rigid)
da/dN FCG (rigid)

SCC CO, (flexible)

Mainly carbon steel, pipeline steel
(X65 and Alloy 625 CRA)

HIC, SSC qualification for Sour Service


https://www.rigzone.com/news/aker_solutions_petrobras_ink_deal_for_subsea_equipment-07-nov-2022-170967-article/
https://petroleohoje.editorabrasilenergia.com.br/petrobras-desenvolve-nova-tecnologia-de-risers/

Upstream and Transport

Transport — Onshore and Offshore

- Export gas with H,S (risk of wet H,S sour service)
Topside Internal fluid EAC is mainly due to H,S (SSC)

External on-shore SCC (solil as electrolyte):
Baking issues on high strength fasteners Near-neutral pH SCC
HIC, SSC qualification for Sour Service (H.,S) High pH SCC
Duplex and SDSS equipment subject to hydrogen
Chloride Stress Cracking on SS fasteners (not Petrobras) [New Challenge] Hydrogen gas transport
Hydrogen Embrittlement on 17-4 PH fasteners [New Challenge] High CO, CCUS applications

[New Challenge] Fasteners for splash zone flanged connections


https://petrobras.com.br/en/our-activities/main-operations/terminals-and-pipelines/sao-sebastiao-terminal-osplan-i-pipeline.htm
https://comunicabaciadesantos.petrobras.com.br/conteudo/fpso-p-68.html

Fracture Mechanics in Environmentally Assisted Cracking

Fracture Mechanics Approach
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Fracture Mechanics in Environmentally Assisted Cracking




Fracture Mechanics in Environmentally Assisted Cracking

Damage tolerant design
« Use of SN or da/dN curves at the design stage;

« Limit acceptable flaw size (with NDT) and assume ‘no-initiation’ behaviour;

Safe life design

« Without fracture mechanics, test smooth specimens;
« Assume no pre-existing flaws;
« Design for no crack nucleation;

Stress-based and Strain-based design (ex. duplex stainless steels HISC and DNV RP F-112)

Fitness-for-service requirement

« After failure or identification of risk - how to address operating equipment?
 How to compare different components and establish a probability of failure ranking?



EAC - Corrosion-Fatigue or Hydrogen Assisted Fatigue

Damage tolerant design

Aggressive « Assuming pre-existing crack-like flaws

« Lowering of AK threshold values (AK)

» Higher crack growth rates lead to much shorter lives

» Risk of ‘fatigue exemption’ by codes

log (da/dN)

K

max

log (AK)

K

min

(a) True Corrosion
Fatigue (TCF) Time




Fatigue Crack Growth Rate - Hydrogen Gas
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Fig. 2. Fatigue crack growth rate (da/dN) vs. stress intensity factor range
102 . . (AK) relationships for X52 line pipe steel in high-purity hydrogen gas and
X42 line pipe steel I AN v i , Al wer
6.9 MPa N ambient air. The da/dN vs. AK relationships in hydrogen and air were
i ] : : a Ny measured at both R = 0.1 and R = 0.5. Two datasets are plotted for high-
10 ,_,-"'t alr R=0.1 purity hydrogen at R = 0.1. Fatigue crack growth data for X42 line pipe

' R=01and0.5 f=5Hz steel measured in high-pressure nitrogen gas [12] are included for

f=10 Hz

comparison with the X52 data in air.
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B.P. Somerday, P. Sofronis, K.A. Nibur, C. San Marchi, R. Kirchheim,
Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations,
Acta Materialia, Volume 61, Issue 16, 2013, Pages 6153-6170, ISSN 1359-6454, https://doi.org/10.1016/j.actamat.2013.07.001.



Subcritical crack growth - Static Loading only
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Subcritical crack growth - Static Loading only

Low alloy steel 1400 MPa YS
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Failure Analysis Diagram (FAD) - EAC

BS 7910:2019

12 = FAL (continuous yielding)
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Figure 7.13 Example of a Failure Assessment Diagram
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Main Challenges for EAC Testing

L .».:._»} ;‘- ‘

Sandia ;
National |
Laboratories

Direct Current Potential
Drop (DCPD) sense wires

Compact tension

»‘ .
l: = / (CT) specimen

N\

DCPD excitation

LvDT
Displacement
transducer

Lack of specific and detailed test standards (niche topic);
Similitude (reproduction of test environment and loading);
Hydrogen pre-charging (+ austenitic alloys, + transient testing);
Long test times and/or incubation period for crack initiation;
In-situ testing always preferable to ex-situ testing;

High pressure conditions (100 bar < Py, < 1000 bar);

With CO,, H,S and H.;

Contamination of test environment (O,, CO);

High temperature conditions affect test system setup and control;


https://www.sandia.gov/app/uploads/sites/158/2021/12/Lee_SNL.pdf

Typical hydrogen sources

« (Cathodic Protection (sacrificial anodes or impressed current);
« Corrosion reactions (even atmospheric corrosion);

« Coatings (Cd, Zn, Zn-Ni) that require baking procedures;

* Hydrogen pre-charging in test specimens;
« Bulk material diffusion to replicate field;
« 20 to 30 years design life;

» Testing in-situ;

* Incubation time;

» Slower loading rates (K-rate or €-rate);

« Austenitic alloys (SS, PH Ni);

.a—j.

05

0,75

Material Deff (m2 s-1)

Pure iron 7,2 x10-9

BS 4360 50D (S355]J2G3, 1.0577) 1,7 x 10-10
AISI 4340 (1.6565) 1,7 x 10-11

3,5 % Ni-Cr-Mo-V 5,3 x 10-12



https://www.onesubsea.slb.com/subsea-production-systems/subsea-manifold-systems/subsea-production-manifold-systems

Fatigue Crack Growth Rate - Hydrogen Gas

10

- Effect of impurities

Fig. 6. Fatigue crack growth rate (da/dN) vs. stress intensity factor range
(AK) relationships for X52 line pipe steel in mixed H-> + O gases (R= 0.1
or 0.5), high-purity hydrogen gas (R=0.1), and ambient air (R =0.1 and
0.5). The da/dN vs. AK relationships in high-purity hydrogen
(<0.5 v.p.p.m. O-) and air are from Fig. 2.
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B.P. Somerday, P. Sofronis, K.A. Nibur, C. San Marchi, R. Kirchheim,
Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations,
Acta Materialia, Volume 61, Issue 16, 2013, Pages 6153-6170, ISSN 1359-6454, https://doi.org/10.1016/j.actamat.2013.07.001.
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EAC Modelling and Database Building

Underlying EAC mechanistic phenomena is often under ‘current’ investigation and require a multi-
physics, complex modelling approach;

Fitting of test data with current models is fairly feasible - the main challenge is to extrapolate to other
scenarios, heats, material specs, etc;

Testing laboratory infrastructure is expensive (high pressure, safety issues, complex monitoring);

Long testing times, need for test frames long-term availability and risk of losing tests increase costs
considerably;

Test results reliability (repeatability and reproducibility) is also challenging, as the number of labs
running this type of tests at a high quality level is quite small, which hinders massive round-robin efforts;

Nevertheless, hydrogen gas and energy transition has been given significant funding and effort, specially
in Europe, US and Japan. This has been crucial to the current state-of-the-art;



EAC Modelling and Database Building

Several approaches for EAC modelling have been applied in the literature. They differ mainly in:

« Learning curve requirements;

* Proprietary softwares or solvers;

« Capability to address different type of material/environment scenarios;

* Number of parameters that require fitting;

« Parameters that can be obtained in tests or other characterization approaches;

We can list:

 Diffusion and Trapping models (Oriani and McNabb-Foster) for ECP/TDS (several authors)

« Phase-field model (Emilio Martinez-Paneda - Imperial College)

« Crack-tip strain-rate model (Nuclear industry - Peter Andresen / Ramgopal Thodla at DNV Ohio)
* Modified ductile-damage Gurson-Tvergaard-Needleman model (several authors)

» Cohesive Zone Model (mainly SINTEF/NTNU)

« WARP 3D approach (Illinois research group / NAMEF/USP - Claudio Ruggieri)

* Modified Abaqus with UMATHT routines (several authors)



Static EAC + Fatigue

Aggressive Aggressive
Aggressive
= = E
b X 3
© o =)
g g g /
| J
log (AK) log (AK) log (AK)
(a) True Corrosion (b) Stress Corrosion (c) SCF with TCF

Fatigue (TCF) Fatigue (SCF)



Static EAC + Fatigue

AK always the same, K_ .. and K_.. change

Aggressive

Influence of R (mean stress)

Full cycle above SCC threshold ICGR

log (da/dN)

Cycle partially above SCC threshold ICGR

Full cycle below SCC threshold

log (AK)




EAC/SCC/HE vs. Corrosion-Fatigue or Hydrogen Assisted Fatigue
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EAC/SCC/HE vs. Corrosion-Fatigue or Hydrogen Assisted Fatigue
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Static EAC + Fatigue Parameters

Static Loading Only
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Rising displacement test and Elasto-plastic behaviour
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Rising displacement test vs. Constant Displacement Tests for lower YS

In-situ vs. Ex-situ
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Fig. 3—Crack arrest thresholds in 103 MPa H- gas from constant-
displacement tests (Ky1ya). open symbols, and crack initiation thresh-
olds from rising-displacement tests (Kyy;). filled symbols, plotted as
a function of yield strength. The solid and dashed lines show general

trends of Egs. [3] and [7]. respectively, as a function of &f'/g,.

DOI: 10.1007/s11661-012-1400-5

Figure 7 The effect of loading format, including
fixed-CMOD vyielding crack arrest under falling K
(L) and rising-CMOD causing crack growth initia-
tion under rising K (), on IHAC of a tempered
bainitic alloy steel containing a given constant
amount of pre-charged H (source Gangloft, 1998).



FFS Standards (BS 7910 / APl 579 / FITNET)

10.3.3 Environmentallv assisted cracking BS 7910:2019

10.3.3.2 Stress corrosion cracking (SCC)
10.3.3.2.2 Kscc determination

NOTE

The fracture toughness at initiation of stable tearing can be defined using R-curve
data obtained from tests performed using specific material-environmental
combinations. However, the use of tearing resistance curves for the assessment
of ductile tearing in an aggressive environment is still the subject of ongoing

research.




Test Standards

(ﬂg]:b) ASTM
ASTM F1624 - 12(2018) @ HL[§7 INTERNATIONAL

Standard Test Method for Measurement of Hydrogen
Embrittlement Threshold in Steel by the Incremental Step
Loading Technique

ASTM F519-18 @
Standard Test Method for Mechanical Hydrogen Embrittlement

Evaluation of Plating/Coating Processes and Service
Environments

ASTM G129 - 00(2013) @
Standard Practice for Slow Strain Rate Testing to Evaluate the

Susceptibility of Metallic Materials to Environmentally Assisted
Cracking

ASTM E1681 - 03(2020) @

Standard Test Method for Determining Threshold Stress
Intensity Factor for Environment-Assisted Cracking of Metallic
Materials

NACE

oo INTERNATIONAL

TMO0177-2016-SG, Laboratory Testing of Metals for Resistance to Sulfide
Stress Cracking and Stress Corrosion Cracking in H2S Environments
TMO0198-2020, “Slow Strain Rate Test Method for Screening Corrosion-
Resistant Alloys for Stress Corrosion Cracking in Sour Oilfield Service”
TMO0316-2016-SG, “Four-Point Bend Testing of Materials for Oil and Gas
Applications”

Inert Environment
Fracture Toughness

ASTM E1820 - 20b
Standard Test Method for Measurement of Fracture Toughness

ISO 12135:2016
Unified method of test for the determination of quasistatic fracture toughness

ISO 15653:2018
Method of test for the determination of quasistatic fracture toughness of welds

ASTM E1921 - 20
Reference Temperature, To, for Ferritic Steels in the Transition Range

ISO/TR 20491:2019

Fasteners — Fundamentals of hydrogen embrittlement in steel fasteners

oy 1S016573-1:2020
ISO Steel — Measurement method for the evaluation of hydrogen embrittlement
resistance of high strength steels — Part 1: Constant load test

A-v-g 1SO/DIS 16573-2

Steel — Measurement method for the evaluation of hydrogen embrittlement
resistance of high strength steels — Part 2: Slow stain rate test

ISO 7539 consists of the following parts, under the general title Corrosion of metals and alloys — Stress

corrosion testing:
Part 1: General guidance on testing procedures
Part 2: Preparation and use of bent-beam specimens
Part 3: Preparation and use of U-bend specimens
Part 4: Preparation and use of uniaxially loaded tension specimens

Part 5: Preparation and use of C-ring specimens

Pa rt 6: Preparation and use of pre-cracked specimensfortestsunder constantload or constant displacement

Pafft 7- Method for slow strain rate testing

Part8: Preparation and use of specimens to evaluate weldments

Part 9: Preparation and use of pre-cracked specimens for tests under rising load or rising displacement

Part 11: Guidelines for testing the resistance of metals and alloys to hydrogen embrittlement and

hydrogen assisted cracking
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